Calibration/Validation Issues: Microwave Atmospheric Imagery and Soundings

Presented by
David H. Staelin
Massachusetts Institute of Technology

IGARSS Satellite Calibration/Validation Panel Session

IGARSS 2002 -- Toronto, Canada June 28, 2002

Outline

- Radiance goals: consistency < ~0.2K (<0.02K for ~54-GHz climate)
- Instrument behavior: sources of error and examples
- Calibration techniques and examples
- Examples: EDR validation and validation issues

Radiance Calibration Goals

- Radiance goals are stressing and beyond current stated requirements
- NOAA/NCEP numerical weather predictions:
 - As 3-D and 4-D variational assimilations improve, random radiance errors must be < ~0.2K rms (to have significant impact)
- Microwave climate observations:
 - Random radiance errors currently $< \sim 0.02$ K rms for temperature
- Therefore radiance errors are a primary issue (~100-km scale)
- If radiance calibration errors meet goals, then
 - EDR's become primarily an algorithm validation issue
- Therefore the following discussion focuses on radiance calibration

External Sources of Radiance Error, Solutions

- Calibration load emissions: temperature, environmental reflections
 - Ground-based load emissivity and emission measurements
- Antenna sidelobes on earth, spacecraft, sun, moon, space cause errors
 - Therefore observe climate-corrected left-right scan asymmetry
 - Roll spacecraft and use earth and sun as sources in the sidelobes
 - In window channels, use ground-based transmitters to space
 - Ground measurement of sidelobes; calculate and correct radiance errors
- Antenna polarization errors (window and mesospheric channels)
 - Observe climate-corrected left-right scan asymmetry (near limb)
 - In window channels, use ground-based transmitters to space
 - Ground measurement of polarization at all scan angles, frequencies
- **RFI from spacecraft** modulated by scanned antenna or spacecraft
 - Observe climate-corrected left-right scan asymmetry
 - Intermittent turn-off of suspected RFI sources (e.g. AMSU-B)
 - Ground measurement of RFI emissions and instrument sensitivity

Internal Sources of Radiance Error, Solutions

- Slow gain and baseline drifts (temperature drift, aging); therefore:
 - Use 2-point instrument calibration (ambient load and cold space)
 - RAOB, NWP comparisons (opaque channels)
 - Benchmark minimum oceanic brightnesses (ocean T_B has minimum)
 - Cross-instrument, cross-satellite, and aircraft radiance comparisons
- Rapid gain and baseline drifts (internal oscillations, calibrator reflections)
 - Raw-count and known-source analyses (e.g., examine uniform fields)
 - Ground analysis of stability, internal reflections (tunable-short test)
- Single-channel non-linearities and memory
 - Known-source analyses; cross-instrument, cross-satellite comparisons
- Inter-channel cross-talk, memory (e.g. "gain stealing" in broad amplifiers)
 - Correlation patterns in residual radiance errors relative to NWP, etc.
 - Ground analysis of linearities, cross-talk, and memory

Overview of Microwave Cal/Val

DHS-6/28/02

- First calibrate instruments and radiances without forward model
- Next calibrate forward model with lab and multiple sensors (e.g. NAST)
- Then modify radiances with minimal use of forward model
- Finally, calibrate retrieval algorithm (use multiple sensors, e.g. NAST)